Minimal positive harmonic functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolation by Positive Harmonic Functions

A natural interpolation problem in the cone of positive harmonic functions is considered and the corresponding interpolating sequences are geometrically described.

متن کامل

Some Properties of Positive Harmonic Functions

From a monotonicity property, we derive several results characterizing positive harmonic functions in the unit ball in R and positive measures on the unit sphere Sn−1. Let Bn = {x ∈ Rn : |x| < 1}, n ≥ 2 be the unit ball in Rn and Sn−1 = ∂Bn be the unit sphere. From a monotonicity property, we derive several results characterizing positive harmonic functions in Bn and positive measures on Sn−1. ...

متن کامل

Harmonic Functions with Positive Real Part

In this paper, the class of harmonic functions f = h+ ḡ with positive real part and normalized by f(ζ) = 1, (|ζ| < 1) is studied, where h and g are analytic in U = {z : |z| < 1}. Some properties of this class are searched. Sharp coefficient relations are given for functions in this class. On the other hand, the author make use of Alexander integral transforms of certain analytic functions (whic...

متن کامل

Minimal Positive Realizations of Transfer Functions with Positive Real Poles

A standard result of linear-system theory states that a SISO rational th-order transfer function always has an th-order realization. In some applications, one is interested in having a realization with nonnegative entries (i.e., a positive system) and it is known that a positive system may not be minimal in the usual sense. In this paper, we give an explicit necessary and sufficient condition f...

متن کامل

Minimal Surfaces and Harmonic Functions in the Heisenberg Group

We study the blow-up of H-perimeter minimizing sets in the Heisenberg group H, n ≥ 2. We show that the Lipschitz approximations rescaled by the square root of excess converge to a limit function. Assuming a stronger notion of local minimality, we prove that this limit function is harmonic for the Kohn Laplacian in a lower dimensional Heisenberg group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1941

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1941-0003919-6